Высшая математика — просто и доступно! Если сайт упал, используйте ЗЕРКАЛО: Наш форум и библиотека: Не нашлось нужной задачи?

Задайте вопрос на форуме! Высшая математика для чайников, или с чего начать? Векторы для чайников Скалярное произведение векторов Линейная не зависимость векторов. Базис векторов Переход к новому базису Векторное и смешанное произведение векторов Формулы деления отрезка в данном отношении Прямая на плоскости Простейшие задачи с прямой на плоскости Линейные неравенства Как научиться решать задачи по аналитической геометрии?

Эллипс Гипербола и парабола Задачи с линиями 2-го порядка Как привести уравнение л. Полярные координаты Как построить линию в полярной системе координат? Уравнение плоскости Прямая в пространстве Задачи с прямой в пространстве Основные задачи на прямую и плоскость Треугольная пирамида. Множества и действия над ними Основы математической логики Формулы и законы логики Уравнения высшей математики Комплексные числа Выражения, уравнения и с-мы с комплексными числами Действия с матрицами Как вычислить определитель?

Свойства определителя и понижение его порядка Как найти обратную матрицу? Матричные выражения Матричные уравнения Как решить систему линейных уравнений? Матричный метод решения системы Метод Гаусса для чайников Несовместные системы и системы с общим решением Как найти ранг матрицы? Однородные системы линейных уравнений Метод Гаусса-Жордана Решение системы уравнений в различных базисах Линейные преобразования Собственные значения и собственные векторы. Примеры решений Замечательные пределы Методы решения пределов Бесконечно малые функции.

Эквивалентности Правила Лопиталя Сложные пределы Пределы последовательностей Пределы по Коши. Примеры решений Логарифмическая производная Производные неявной, параметрической функций Простейшие задачи с производной Производные высших порядков Что такое производная? Производная по определению Как найти уравнение нормали? Приближенные вычисления с помощью дифференциала Метод касательных. Графики и свойства элементарных функций Как построить график функции с помощью преобразований?

Непрерывность, точки разрыва Область определения функции Асимптоты графика функции Интервалы знакопостоянства Возрастание, убывание и экстремумы функции Выпуклость, вогнутость и точки перегиба графика Полное исследование функции и построение графика Наибольшее и наименьшее значения функции на отрезке Экстремальные задачи.

Область определения функции двух переменных. Линии уровня Основные поверхности Предел функции 2 переменных Повторные пределы Непрерывность функции 2п Частные производные Частные производные функции трёх переменных Производные сложных функций нескольких переменных Как проверить, удовлетворяет ли функция уравнению? Частные производные неявно заданной функции Производная по направлению и градиент функции Касательная плоскость и нормаль к поверхности в точке Экстремумы функций двух и трёх переменных Условные экстремумы Наибольшее и наименьшее значения функции в области Метод наименьших квадратов.

Примеры решений Метод замены переменной в неопределенном интеграле Интегрирование по частям Интегралы от тригонометрических функций Интегрирование дробей Интегралы от дробно-рациональных функций Интегрирование иррациональных функций Сложные интегралы Определенный интеграл Как вычислить площадь с помощью определенного интеграла?

Теория для чайников Объем тела вращения Несобственные интегралы Эффективные методы решения определенных и несобственных интегралов S в полярных координатах S и V, если линия задана в параметрическом виде Длина дуги кривой S поверхности вращения Приближенные вычисления определенных интегралов Метод прямоугольников. Дифференциальные уравнения первого порядка Однородные ДУ 1-го порядка ДУ, сводящиеся к однородным Линейные неоднородные дифференциальные уравнения первого порядка Дифференциальные уравнения в полных дифференциалах Уравнение Бернулли Дифференциальные уравнения с понижением порядка Однородные ДУ 2-го порядка Неоднородные ДУ 2-го порядка Линейные дифференциальные уравнения высших порядков Метод вариации произвольных постоянных Как решить систему дифференциальных уравнений Задачи с диффурами Методы Эйлера и Рунге-Кутты.

Ряды для чайников Как найти сумму ряда? Признаки Коши Знакочередующиеся ряды. Признак Лейбница Ряды повышенной сложности. Степенные ряды Разложение функций в степенные ряды Сумма степенного ряда Равномерная сходимость Другие функциональные ряды Приближенные вычисления с помощью рядов Вычисление интеграла разложением функции в ряд Как найти частное решение ДУ приближённо с помощью ряда?

Вычисление пределов Ряды Фурье. Двойные интегралы Как вычислить двойной интеграл? Примеры решений Двойные интегралы в полярных координатах Как найти центр тяжести плоской фигуры?

Тройные интегралы Как вычислить произвольный тройной интеграл? Криволинейные интегралы Интеграл по замкнутому контуру Формула Грина. Работа силы Поверхностные интегралы. Основы теории поля Поток векторного поля Дивергенция векторного поля Формула Гаусса-Остроградского Циркуляция векторного поля и формула Стокса. Примеры решений типовых задач комплексного анализа Как найти функцию комплексной переменной? Решение ДУ методом операционного исчисления Как решить систему ДУ операционным методом?

Основы теории вероятностей Задачи по комбинаторике Задачи на классическое определение вероятности Геометрическая вероятность Задачи на теоремы сложения и умножения вероятностей Зависимые события Формула полной вероятности и формулы Байеса Независимые испытания и формула Бернулли Локальная и интегральная теоремы Лапласа Статистическая вероятность Случайные величины.

Математическое ожидание Дисперсия дискретной случайной величины Функция распределения Геометрическое распределение Биномиальное распределение Распределение Пуассона Гипергеометрическое распределение вероятностей Непрерывная случайная величина, функции F x и f x Как вычислить математическое ожидание и дисперсию НСВ?

Равномерное распределение Показательное распределение Нормальное распределение. Если Вы заметили опечатку, пожалуйста, сообщите мне об этом. Заказать контрольную Часто задаваемые вопросы Гостевая книга. Авторские работы на заказ. По высшей математике и физике. Похоже, я начинаю понимать одухотворённо-проникновенный лик вождя мирового пролетариата, автора собрания сочинений в 55 томах….

Нескорый путь начался элементарными сведениями о функциях и графиках , и вот сейчас работа над трудоемкой темой заканчивается закономерным результатом — статьёй о полном исследовании функции. Долгожданное задание формулируется следующим образом: Исследовать функцию методами дифференциального исчисления и на основании результатов исследования построить её график. В простых случаях нас не затруднит разобраться с элементарными функциями, начертить график, полученный с помощью элементарных геометрических преобразований и т.

Однако свойства и графические изображения более сложных функций далеко не очевидны, именно поэтому и необходимо целое исследование. Основные этапы решения сведены в справочном материале Схема исследования функции , это ваш путеводитель по разделу. Чайникам требуется пошаговое объяснение темы, некоторые читатели не знают с чего начать и как организовать исследование, а продвинутым студентам, возможно, будут интересны лишь некоторые моменты.

Но кем бы вы ни были, уважаемый посетитель, предложенный конспект с указателями на различные уроки в кратчайший срок сориентирует и направит Вас в интересующем направлении.

На счёт заключительного действия, думаю, всем всё понятно — будет очень обидно, если в считанные секунды его перечеркнут и вернут задание на доработку. Следует отметить, что в других источниках количество пунктов исследования, порядок их выполнения и стиль оформления могут существенно отличаться от предложенной мной схемы, но в большинстве случаев её вполне достаточно. Простейшая версия задачи состоит всего из этапов и формулируется примерно так: Естественно — если в вашей методичке подробно разобран другой алгоритм или ваш преподаватель строго требует придерживаться его лекций, то придётся внести некоторые коррективы в решение.

Не сложнее, чем заменить вилку бензопилой ложкой. Итак, вооружившись общей схемой исследования , где рассмотрена структура и техника выполнения задачи, переходим к изучению стратегии и тактики действий. Исследовать функцию и по результатам исследования построить график. Это очень хорошо, отпадают вертикальные асимптоты. После чего следует шаблонная отписка: Так как функция непрерывна на , то вертикальные асимптоты отсутствуют. Нет и наклонных асимптот.

Выясним, как ведёт себя функция на бесконечности: Иными словами, если идём вправо, то график уходит бесконечно далеко вверх, если влево — бесконечно далеко вниз. Да, здесь тоже два предела под единой записью. Если у вас возникли трудности с расшифровкой знаков , пожалуйста, посетите урок о бесконечно малых функциях. Таким образом, функция не ограничена сверху и не ограничена снизу. Учитывая, что у нас нет точек разрыва, становится понятна и область значений функции: Каждый этап задания приносит новую информацию о графике функции , поэтому в ходе решения удобно использовать своеобразный МАКЕТ.

Изобразим на черновике декартову систему координат. Что уже точно известно? Во-первых, у графика нет асимптот, следовательно, прямые чертить не нужно. Во-вторых, мы знаем, как функция ведёт себя на бесконечности. Согласно проведённому анализу, нарисуем первое приближение: А может быть точек пересечения несколько?

Сначала найдём точку пересечения графика с осью ординат. Необходимо вычислить значение функции при: Полтора над уровнем моря. Такое уравнение имеет, как минимум, один действительный корень, и чаще всего этот корень иррационален. В худшей же сказке нас поджидают три поросёнка. Уравнение разрешимо с помощью так называемых формул Кардано , но порча бумаги сопоставима чуть ли не со всем исследованием. В этой связи разумнее устно либо на черновике попытаться подобрать хотя бы один целый корень.

Проверим, не являются ли оными числа: Тогда пункт исследования лучше полностью пропустить — авось станет что-нибудь понятнее на завершающем шаге, когда будут пробиваться дополнительные точки. Алгоритм деления многочлена на многочлен детально разобран в первом примере урока Сложные пределы. А теперь немного о здоровом образе жизни. Я, конечно же, понимаю, что квадратные уравнения нужно решать каждый день, но сегодня сделаем исключение: Полученные выводы позволяют детализировать наш макет, и второе приближение графика выглядит следующим образом: К слову, функция может иметь и бесконечно много экстремумов.

Данное уравнение имеет два действительных корня. Отложим их на числовой прямой и определим знаки производной: Установленные факты загоняют наш шаблон в довольно жёсткие рамки: Что и говорить, дифференциальное исчисление — штука мощная.

Давайте окончательно разберёмся с формой графика:. Найдём критические точки второй производной: Вычислим ординату точки перегиба: В данном случае их мало, но пренебрегать не будем: Зелёным цветом отмечена точка перегиба, крестиками — дополнительные точки. График кубической функции симметричен относительно своей точки перегиба, которая всегда расположена строго посередине между максимумом и минимумом.

По ходу выполнения задания я привёл три гипотетических промежуточных чертежа. На практике же достаточно нарисовать систему координат, отмечать найденные точки и после каждого пункта исследования мысленно прикидывать, как может выглядеть график функции. Студентам с хорошим уровнем подготовки не составит труда провести такой анализ исключительно в уме без привлечения черновика.

Исследовать функцию и построить график. Методами дифференциального исчисления исследовать функцию и на основании результатов исследования построить её график. График функции представляет собой две непрерывные ветви, расположенные в левой и правой полуплоскости — это, пожалуй, самый важный вывод 1-го пункта.

Обратите внимание, что в левой полуплоскости график, по меньшей мере, один раз обязан пересечь ось абсцисс. В правой полуплоскости нулей функции может и не быть. У правой ветви графика непременно должен быть хотя бы один минимум. Слева экстремумы не гарантированы. Чтобы контролировать последующие пункты исследования и не допустить ошибок!

Дальнейшие выкладки не должны противоречить сделанным выводам. График функции не пересекает ось. Методом интервалов определим знаки: После каждого этапа смотрите на черновик, мысленно сверяйтесь с исследованием и дорисовывайте график функции.

В рассматриваемом примере числитель почленно делится на знаменатель, что очень выгодно для дифференцирования: Собственно, это уже проделывалось при нахождении асимптот. Вот здесь придётся изрядно потрудиться, поскольку из исследования нам известны только две точки. В ходе выполнения задания нужно тщательно следить за тем, чтобы не возникало противоречий между этапами исследования, но иногда ситуация бывает экстренной или даже отчаянно-тупиковой.

В этом случае рекомендую аварийный приём: Графический анализ найденных значений в большинстве случаев подскажет, где правда, а где ложь. Кроме того, график можно предварительно построить с помощью какой-нибудь программы, например, в том же Экселе понятно, для этого нужны навыки. Методами дифференциального исчисления исследовать функцию и построить её график.

Это пример для самостоятельного решения. В нём самоконтроль усиливается чётностью функции — график симметричен относительно оси , и если в вашем исследовании что-то противоречит данному факту, ищите ошибку. Чётную или нечётную функцию можно исследовать только при , а потом пользоваться симметрией графика.

Такое решение оптимально, однако выглядит, по моему мнению, весьма непривычно.

Исследование функций с помощью производной

Лично я рассматриваю всю числовую ось, но дополнительные точки нахожу всё же лишь справа:. Провести полное исследование функции и построить её график. Поэтому оба бесконечных предела можно оформить под единой записью. В ходе решения используем правило Лопиталя: Обратите внимание, как я хитро избежал полного алгоритма нахождения наклонной асимптоты: Здесь тоже сокращаем решение: Других точек пересечения с координатными осями нет.

Более того, интервалы знакопостоянства очевидны, и ось можно не чертить: Настоятельно рекомендую оформлять черновой шаблон графика по ходу исследования! Точки симметричны относительно нуля, как оно и должно быть. После этого пункта исследования прорисовалась и область значений функции: Если у вас возникло недопонимание каких-либо моментов, ещё раз призываю начертить в тетради координатные оси и с карандашом в руках заново проанализировать каждый вывод задания. Во всех критических точках существуют перегибы графика.

Найдём ординаты точек перегиба, при этом снова сократим количество вычислений, используя нечётность функции: Изначально было запланировано 5 примеров, и если честно, я ожидал, что статья получится заметно больше по объему. Конечно, хочется исследовать ещё одну функцию, но с другой стороны — нельзя объять необъятное, поэтому сегодня воздержимся от логарифмов. Самое важное — усвоить методы, приёмы и хитрости исследования, которые мы только что разобрали.

Желающие могут пройти на страницу готовых задач по высшей математике и закачать архив, который содержит 69 исследований. Выбирайте любую функцию и тренируйтесь! С осью Определим знаки: В обеих критических точках существуют перегибы графика. Очевидно, что функция непериодическая.

Так как функция непрерывна на всей числовой прямой, то вертикальные асимптоты отсутствуют. График функции проходит через начало координат. В обеих критических точках существуют перегибы графика: Как можно отблагодарить автора? Качественные работы без плагиата — Zaochnik. Копирование материалов сайта запрещено.

Уравнение плоскости Прямая в пространстве Задачи с прямой в пространстве Основные задачи на прямую и плоскость Треугольная пирамида Элементы высшей алгебры: Однородные системы линейных уравнений Метод Гаусса-Жордана Решение системы уравнений в различных базисах Линейные преобразования Собственные значения и собственные векторы Пределы: Приближенные вычисления с помощью дифференциала Метод касательных Функции и графики: Непрерывность, точки разрыва Область определения функции Асимптоты графика функции Интервалы знакопостоянства Возрастание, убывание и экстремумы функции Выпуклость, вогнутость и точки перегиба графика Полное исследование функции и построение графика Наибольшее и наименьшее значения функции на отрезке Экстремальные задачи ФНП: Частные производные неявно заданной функции Производная по направлению и градиент функции Касательная плоскость и нормаль к поверхности в точке Экстремумы функций двух и трёх переменных Условные экстремумы Наибольшее и наименьшее значения функции в области Метод наименьших квадратов Интегралы: Дифференциальные уравнения первого порядка Однородные ДУ 1-го порядка ДУ, сводящиеся к однородным Линейные неоднородные дифференциальные уравнения первого порядка Дифференциальные уравнения в полных дифференциалах Уравнение Бернулли Дифференциальные уравнения с понижением порядка Однородные ДУ 2-го порядка Неоднородные ДУ 2-го порядка Линейные дифференциальные уравнения высших порядков Метод вариации произвольных постоянных Как решить систему дифференциальных уравнений Задачи с диффурами Методы Эйлера и Рунге-Кутты Числовые ряды: Признак Лейбница Ряды повышенной сложности Функциональные ряды: Примеры решений Кратные интегралы: Работа силы Поверхностные интегралы Элементы векторного анализа: Основы теории поля Поток векторного поля Дивергенция векторного поля Формула Гаусса-Остроградского Циркуляция векторного поля и формула Стокса Комплексный анализ: С осью Методом интервалов определим знаки: Отлично — и чертить ничего не надо.

Подготовка к ЕГЭ По высшей математике и физике Помогут разобраться в теме, подготовиться к экзамену.

Карта сайта

23 24 25 26 27 28 29 30 31

Читайте также:

Коментарии:

Дифференциальные уравнения первого порядка Однородные ДУ 1-го порядка ДУ, сводящиеся к однородным Линейные неоднородные дифференциальные уравнения первого порядка Дифференциальные уравнения в полных дифференциалах Уравнение Бернулли Дифференциальные уравнения с понижением порядка Однородные ДУ 2-го порядка Неоднородные ДУ 2-го порядка Линейные дифференциальные уравнения высших порядков Метод вариации произвольных постоянных Как решить систему дифференциальных уравнений Задачи с диффурами Методы Эйлера и Рунге-Кутты. Найдем значения функции во всех найденных точках экстремума и на концах заданного отрезка.

В ходе выполнения задания нужно тщательно следить за тем, чтобы не возникало противоречий между этапами исследования, но иногда ситуация бывает экстренной или даже отчаянно-тупиковой. Такое уравнение имеет, как минимум, один действительный корень, и чаще всего этот корень иррационален. Индивидуальная подготовка к ОГЭ и ЕГЭ по математике.